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Key Idea of NN

e Supervised learning: given examples (X,y), learn f: x » y

e For a new sample x, predict its label y based on that of its closest training sample x,,,,
— A local method

e We do not learn f from training data explicitly; we only process training data to predict
f(x) when x is presented — Lazy learning
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Classification Boundary

e Given a training set, although f is not learned explicitly, it exists.

e (lassification boundary: the boundary across which f(x) changes
— Linear vs. non-linear
— For NN classification, it is piecewise linear

Voronoi diagram
(Fig. 2.4 in LWLS) (Fig. 8.1 in Mitchell)
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Classification Error

e Training error: error made by the learned f on the training set
e Test error: error made by the learned f on the test set

e Training error rate is generally lower than test error rate, but a big mismatch between
training and test error rates indicates overfitting

® Beatles
® Kiss
@ Bob Dylan

Energy (scale 0-1)

Length (In s)
(Fig. 2.5(a) in LWLS)

e NN has zero training error, very likely to overfit
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k-Nearest Neighbor (kNN)

o Key idea: let's consult several closest points and take majority vote
f(x) = MajorityVote{y®:i € Ny (x)} = argmax 2 5y, y)
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(Fig. 2.3 in LWLS)
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Classification Boundary

e For kNN, the classification boundary is also piecewise linear. Why?
— Hint: think about when the k-neighborhood changes

(Fig. 2.4 in LWLS)
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Classification Error

e Training set error of KNN is no longer 0
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(Fig. 2.5 (a) and (b) in LWLS)

o Less overfitting: classification boundary is smoother; test
error is generally lower
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Choosing k

k is the hyper-parameter of kNN

Higher k generally results in a smoother classification boundary, making it more robust to
label noise in the training data

Too high of k would “wash out” interesting patterns in the training data, leading to
meaningless results

Selecting k is a trade-off between flexibility and rigidity

Cross validation is an effective way to setting hyper-parameters, including k
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Error Bounds

o Asymptotic error rate of KNN vs. Bayes error rate (the best possible)
— Error rate is bounded between the arc and diagonal line
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(Figure from [Castellana & Biagi, 2008])
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Distance (feet)

KNN Regression

Supervised learning: given examples (X, y), learn f: x » y, where y
IS continuous

Key idea: let’s consult several closest points and take the average

f(x) = Average{ly®:i € M, (x)} = p z y®
IEN | (x)

k:l k=20

Distance (feet)

Speed (mph) Speed (mph)

(Fig. 2.5 (c) and (c) in LWLS)
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Distance Weighted NN

Key idea: weigh training samples according to distances from query
Classification
f(x) = argmax z w;8(y,y"V)
YU ieNR ()
Regression

With this formulation, we can use all training samples instead of just the k nearest neighbors

— Becomes a global method

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2024

11



Distances

e d:X XX - Ris a distance (or metric) if Va,b,c € X
- d(a,a) =0
— Positivity: d(a,b) >0ifa#Db
— Symmetry: d(a, b) = d(b, a)
— Triangle inequality: d(a,b) + d(b,c) = d(a,c)
e For Euclidian space R"
— Euclidian distance: d(a, b) = /X ,(a; — b;)?, i.e., L* distance
— Manhattan distance: d(a,b) = X, |a; — b;|, i.e., L' distance
— Chebyshev distance: d(a, b) = miax|ai — b;|, i.e., L= distance

— Hamming distance: d(a, b) = X1~ ,(1 — 6(a; — b;)), i.e., L° distance
— In general, LP distance is defined as

1
d(a,b) = (Xi=1la; — bi[P)r, if p = 1
d(a,b) =Y (la;—b;)|?,if0<p<1
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Distances

e Norm of a vector: distance from the origin

05

-0.5

Figures from: https://en.wikipedia.org/wiki/Lp space
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https://en.wikipedia.org/wiki/Lp_space

Other Similarity Measures

Cosine similarity
<ab>

~ lallllbl

Cosine “distance”: does not satisfy triangle inequality
D.,c(a,b) = 1—cos@

cos 6

Kullback-Leibler divergence: not symmetric

P(x)
Dy; (P,0) = P(x)In
k(P Q) E ()G
Jensen-Shannon divergence: does not satisfy triangle inequality

J(P,Q) = (D (P, R+ Dy, (Q, RY), where R =22
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Data-Driven Distances

e Mahalanobis distance e Geodesic distance: length of
— Assume training data x~p(x), and its shortest path through the data
covariance matrix C is positive-definite manifold

dy(a,b) = +/(a— b)TC1(a— b)

-
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Mahalanobis Distance
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32023 (Figure from https://www.embs.org/pulse/articles/what-is-the-
(Figure from https://www.mathworks.com/help/stats/mahal.html) distance-between-objects-in-a-data-set/)
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Data Normalization

o Different features may be at different scales as they have different meanings (e.g., length
vs. voltage) and use arbitrary units (e.g., cm vs. meter)

e Min-max normalization
(1)

Xj —minx;
new _ i ]
X; = . .
J (D) _ i (D)
max x; min x.
i ] i ]

where i is index of training examples

e Variance normalization
xnew — J ]
! 9j
where u; and o; are mean and standard deviation of the training examples
e Note: normalization parameters should be calculated from training data, and then be used

on validation and test data.
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Which features are relevant?

e The distance calculation uses all features (dimensions), but what if some
dimensions are irrelevant?

e (One type of) curse of dimensionality: The more dimensions we have, the
more irrelevant dimensions there are, and the distance calculation is more
easily dominated by those irrelevant dimensions

e Find out the usefulness of dimensions on the validation set
— Add/remove certain dimensions
— Scale certain dimensions
— These are hyper-parameters
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Cross Validation

e K-fold cross validation: partition dataset into k-folds, and rotate

All available data
A

batch 2 batch 3

Validation data Training data

—EWN

hold-out

(2)
Ehold—out

(k)
Ehold—out

Training data Validation data

average = Ey o1

e Leave-one-out: treating each sample as a fold
e Note: cross-validation error Ej,_s,,4 is usually not a good estimate of
the error on unseen data. Why?
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Locally Weighted Regression

* kNN regression: f(x) = =Y icp 0 ¥

— Local regression

— Piecewise constant fitting
— Equal weights from all k neighbors
— Is one kind of locally weighted regression
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=

2

Distance (feet)
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=
1

2=[:»
Speed (mph)
(Fig. 2.5 (d) in LWLS)

e Generally, locally weighted regression

— Local regression

— Piecewise constant, linear, quadratic, etc.
— Typically weighted by distance from query
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Locally Weighted Linear Regression

e Linear regression: f(x) = wy + XF_, wix;

e Global fitting, minimizing squared error: min Y, cx(y — f (x))2
e Locally weighted fitting, minimizing distance-weighted squared error around x

L\ 2 .
min Xien, o) (3’ - f(x(l))) K (d(x, x(‘)))l
where K (-) is a kernel function, usually decreasing

Locally Weighted Linear Regression
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(Figure from https://towardsdatascience.com/locally-weighted-linear-regression-in-python-3d324108efbf)
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Lazy vs. Eager

e Lazy methods, e.g., kNN and locally weighted regression, defer the
processing of training data till test data is presented
— They can consider the test example when making prediction

e Eager methods, e.q., linear regression, processes training data and
generalizes beyond training data before observing any test data
— Predictions for all test examples are already made during training

e Lazy methods represent the target function by a combination of many local
approximations

— E.g., locally weighted linear regression (lazy) learns a piecewise linear function, while
linear regression (eager) learns a globally linear function
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Computational Efficiency

The inference process of lazy methods is slow, as the processing of training
data is delayed till then

A naive kNN algorithm would need to traverse the training set to find nearest
neighbors: O(N)

How to make the search more efficient?

kd-tree (k-dimensional tree) algorithm
— Binary tree

— Each layer chooses one attribute to split

e E.g., fromrootdown: x->y->z->x->y->z-> ..,
— Leaves store training examples
— Search: O(logN)

(Figure from https://en.wikipedia.org/wiki/K-d tree)
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Radial Basis Functions (RBF)

e Linear combination of multiple RBF kernels
f(x) = wp + X, wiKi(d(x™, %)),

where x(® are k centers, and K;(-) is a kernel, e.g.,

_d?Wx
2

Gaussian kernel K;(d(x®W,x)) = e 27

e This can be viewed as a two-layer network

Output layer Training Procedure

(linear combination) Step 2: weights are learned

through linear regression

Gaussian kernel layer (1) | Step 1: centers and variances
are optimized to have a good
coverage of training set

Input layer
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Radial Basis Functions (RBF)

e \We can set the same variance for all kernels

— Define one kernel at each training example
e Training set can be fit exactly
e Slow

— Define one kernel at a subset of training examples
e Training set cannot be fit exactly
e More efficient

e How to choose this subset?
— Uniformly distributing centers
— Random sample
— Finding prototypes through clustering
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Summary

e Instance-based learning delays processing of training examples until test
examples are presented

e They can model complex target functions through a combination of many
local approximations
— kNN learns piecewise constant functions

— Locally weighted regression generalizes over KNN through an explicit local approximation
(e.qg., linear regression)

e RBF networks is an eager method that incorporates the idea of representing
the globally complex target function through a combination of many local
RBF kernel functions
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